

ILLINOIS

Aditya Sinha^{1*}, Siqi Zeng^{1*}, Makoto Yamada², Han Zhao¹ University of Illinois, Urbana-Champaign¹ Okinawa Institute of Science and Technology²

Goal: Accurately and explicitly embed the label hierarchy into the representation space

Motivation

- **Hierarchical label structures** \rightarrow widely exist in real world datasets - CIFAR100, Imagenet-1k, ... 🌲
- **Most representation learning methods** \rightarrow ignore hierarchical semantic relationships between classes in the feature space X
- **Structured Representation Learning** → Hierarchy informed representations incorporating semantic context </br>
 [Zeng et. al, 2023], but cannot embed some trees in the Euclidean (ℓ_{a}) space exactly \times

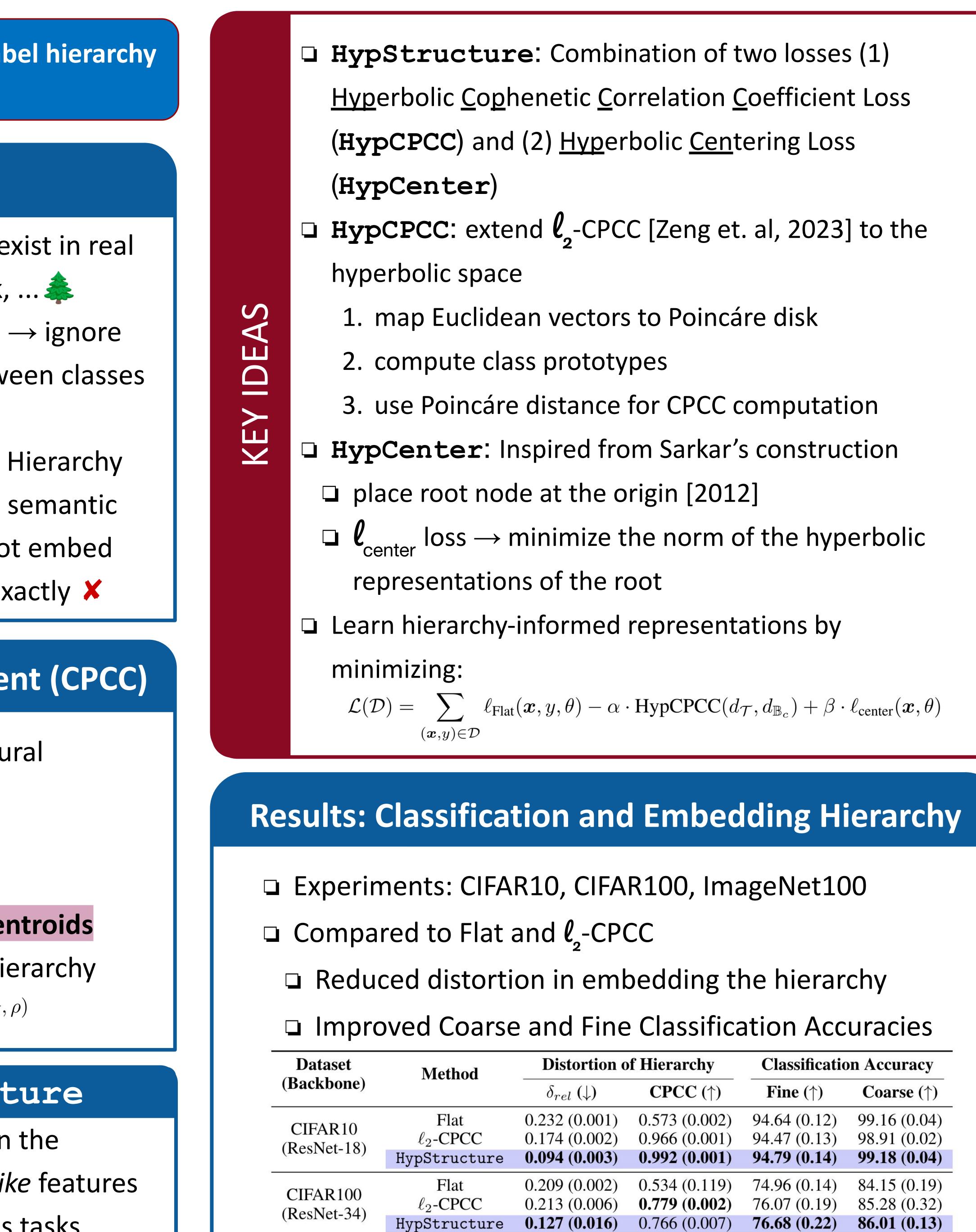
*l*_-<u>Cophenetic</u>_Correlation_Coefficient (CPCC)

	[Zeng et. al, 2023] $\rightarrow \ell_2$ -CPCC for structu
	regularization based on label hierarchy
	$\operatorname{CPCC}(d_{\mathcal{T}},\rho) := \frac{\sum_{i < j} (d_{\mathcal{T}}(v_i, v_j) - \overline{d_{\mathcal{T}}})(\rho(v_i, v_j) - \overline{\rho})}{\sqrt{\sum_{i < j} (d_{\mathcal{T}}(v_i, v_j) - \overline{d_{\mathcal{T}}})^2} \sqrt{\sum_{i < j} (\rho(v_i, v_j) - \overline{\rho})^2}}$
	$\sqrt{\sum_{i < j} (d_{\mathcal{T}}(v_i, v_j) - \overline{d_{\mathcal{T}}})^2} \sqrt{\sum_{i < j} (\rho(v_i, v_j) - \overline{\rho})^2}$
	$ \rho(v_i, v_j) := Euclidean dist. b/w two class cer $
	$d_{\mathcal{T}}(v_i, v_j) :=$ Shortest tree distance in the hields
	LOSS: $\mathcal{L}(\mathcal{D}) = \sum_{(\boldsymbol{\pi}, w) \in \mathcal{D}} \ell_{\text{Flat}}(\boldsymbol{x}, y, \theta, w) - \alpha \cdot \text{CPCC}(d_{\mathcal{T}}, \mu)$
	$(oldsymbol{x},y){\in}\mathcal{D}$

Our Contribution: HypStructure

- label-hierarchy \rightarrow structured learning in the hyperbolic space \rightarrow interpretable *tree-like* features Combine with any loss, beneficial across tasks
- Formal analysis of hierarchical representations

Learning Structured Representations with Hyperbolic Embeddings



<u>Hyperbolic Cophenetic Correlation Coefficient Loss</u>

- \Box l_{center} loss \rightarrow minimize the norm of the hyperbolic

 $\mathcal{L}(\mathcal{D}) = \sum \ell_{\text{Flat}}(\boldsymbol{x}, y, \theta) - \alpha \cdot \text{HypCPCC}(d_{\mathcal{T}}, d_{\mathbb{B}_c}) + \beta \cdot \ell_{\text{center}}(\boldsymbol{x}, \theta)$

Flat

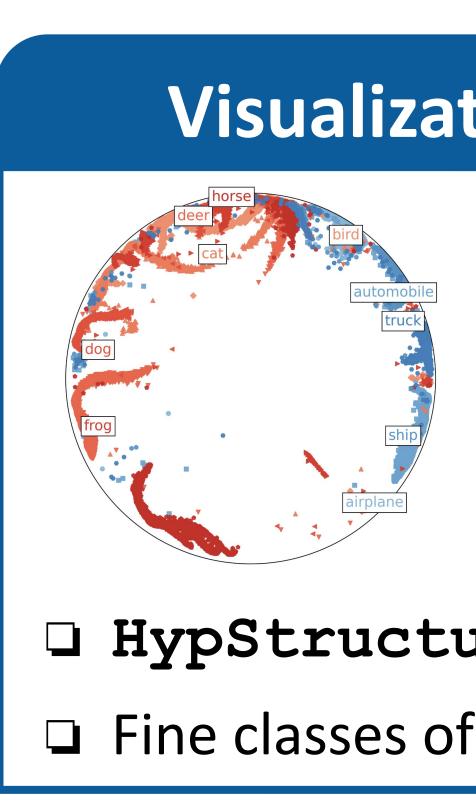
 ℓ_2 -CPCC

HypStructure

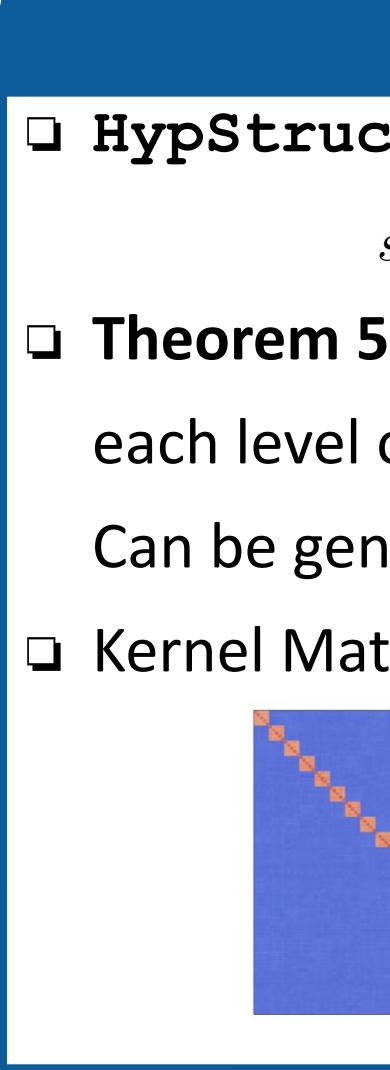
ImageNet100

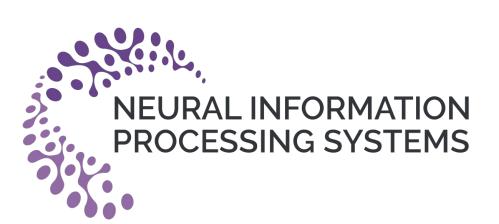
(ResNet-34)

Distortion of Hierarchy		Classification Accuracy	
δ_{rel} (4)	CPCC (†)	Fine (†)	Coarse (†)
0.232 (0.001)	0.573 (0.002) 0.966 (0.001)	94.64 (0.12)	99.16 (0.04)
0.174 (0.002)		94.47 (0.13)	98.91 (0.02)
0.094 (0.003)	0.992 (0.001)	94.79 (0.14)	99.18 (0.04)
0.209 (0.002)	0.534 (0.119)	74.96 (0.14)	84.15 (0.19)
0.213 (0.006)	0.779 (0.002)	76.07 (0.19)	85.28 (0.32)
0.127 (0.016)	0.766 (0.007)	76.68 (0.22)	86.01 (0.13)
0.168 (0.003)	0.429 (0.002)	90.01 (0.07)	90.77 (0.11)
0.213 (0.009)	0.834 (0.002)	89.57 (0.38)	90.34 (0.28)
0.134 (0.001)	0.841 (0.001)	90.12 (0.01)	90.84 (0.02)

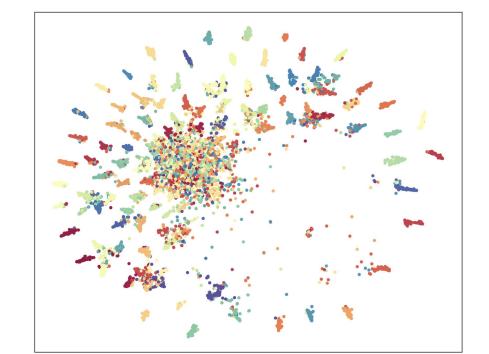


⊐ Experim ⊃ HypSt		
4 4		
🗅 Impro	vem	
•		
🖵 Impro	ved	
Method	AURO	
CIFAR10		
SSD+	97.38	
KNN+	97.22	
ℓ_2 -CPCC	76.67	
HypStructure	97.75	





Visualization: Learnt Representations



□ **HypStructure**: Sharper and discriminative feats.

 \Box Fine classes of the same coarse parent \rightarrow closer

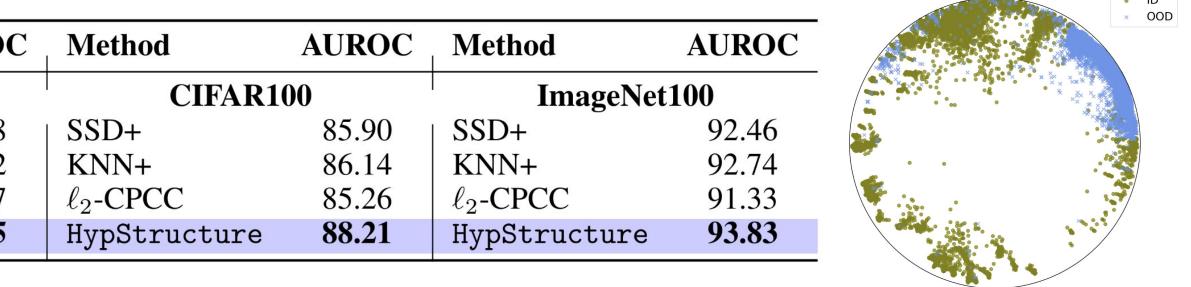
Results: OOD Detection

ts: 3 ID datasets on 9 OOD datasets

cture:

nent in OOD detection AUROC

ID vs OOD separation in Poincare disk



Theoretical Analysis

□ HypStructure with Mahalanobis OOD Score

 $s(\boldsymbol{x}) = (f(\boldsymbol{x}) - \mu)^{\top} \Sigma^{-1} (f(\boldsymbol{x}) - \mu)$

□ **Theorem 5.1**: Existence of eigenvalue gaps between

each level of hierarchy with CPCC.

Can be generalized to arbitrary label tree.

 \Box Kernel Matrix K = ZZ^T, eigenspectrum of K

